Definition 4.8:
Let $a>0$ and define the function $\exp _{a}: \mathbb{R} \rightarrow \mathbb{R}$ to be $\exp _{a}(x):=\exp (x \log a)$

Proposition 4.7:
The function $\exp _{a}: \mathbb{R} \rightarrow \mathbb{R}$ is continuous and we have:
i) $\exp _{a}(x+y)=\exp _{a}(x) \exp _{a}(y) \quad \forall x, y \in \mathbb{R}$
ii) $\exp _{a}(n)=a^{n} \quad \forall n \in \mathbb{Z}$.
iii) $\exp \left(\frac{p}{q}\right)=\sqrt[q]{a^{p}} \quad \forall p \in \mathbb{Z}$ and $q \in \mathbb{N}, q \geq 2$.

Proof:
expat is the composition of the two continuous functions $x \longmapsto x \log a$ and $y \mapsto \exp (y)$
Prop. $4.3 \Longrightarrow$ expa is continuous
i) We compute

$$
\begin{aligned}
\exp a(x+y) & =\exp ((x+y) \log a) \\
& =\exp (x \log a) \exp (y \log a) \\
& =\exp (x) \cdot \exp a(y)
\end{aligned}
$$

We also get for $y=-x: \exp _{a}(-x)=\frac{1}{\exp _{a}(x)}$
ii)

$$
\begin{aligned}
\exp _{a}(n x) & =\exp _{a}(x+(n-1) x) \stackrel{i)}{=} \exp _{a}(x) \exp _{a}((n-1) x) \\
& =\cdots \cdot \underbrace{\exp _{a}(x) \cdot \cdots \cdot \exp _{a}(x)}_{n \text { times }} \\
& =\left(\exp _{a}(x)\right)^{n} \quad \text { for } n \in \mathbb{N} \text { and } x \in \mathbb{R} . \text { (*) }
\end{aligned}
$$

Furthermore, $\operatorname{expa}(1)=\exp (\log a)=a$ and $\operatorname{expa}_{a}(-1)=\frac{1}{a}$. Together with (*) this gives for $x=1$ and $x=-1$:

$$
\exp _{a}(n)=a^{n} \quad \text { and } \exp _{a}(-n)=a^{-n}
$$

iii) We compute

$$
\begin{aligned}
& a^{p}=\exp _{a}(p)=\exp _{a}\left(q \cdot \frac{p}{q}\right)=\left(\exp _{a}\left(\frac{p}{q}\right)\right)^{q} \\
& \Rightarrow \sqrt[q]{a^{p}}=\exp _{a}\left(\frac{p}{q}\right)
\end{aligned}
$$

Corollary 4.3:
For all $a>0$ we have $\lim _{n \rightarrow \infty} \sqrt[n]{a}=1$
Proof:
Using continuity of $\exp _{a}$ we get:

$$
\lim _{n \rightarrow \infty} \sqrt[n]{a}=\lim _{n \rightarrow \infty} \exp _{a}\left(\frac{1}{n}\right)=\exp _{a}(0)=1
$$

Definition 4.9:
Proposition 4.7 justifies the notation

$$
a^{x}:=\exp a(x)=\exp (x \log a)
$$

We call a the "base" of the exponential.
We also define the "euler number":

$$
\begin{aligned}
e:=\exp (1)=\sum_{n=0}^{\infty} \frac{1}{n!} & =1+1+\frac{1}{2}+\frac{1}{3!}+\cdots \\
& =2.7182818 \ldots
\end{aligned}
$$

Remark 4.3:
i) An equivalent definition of e is:

$$
e=\lim _{n \rightarrow \infty}\left(1+\frac{1}{n}\right)^{n} \quad \text { (see Homework 1) }
$$

Later on we will show that this is equivalent to Definition 4.9.
ii) Of all possible bases for an exponential, the base e has the unique property that the slope of the tangent at the point $(x, y)=(0,1)$ is exactly 1 :

We will prove this property later when we introduce differentiation.

Proposition 4.8:
For all $a, b \in \mathbb{R}>0$ and $x, y \in \mathbb{R}$ we have:
i) $a^{x} a^{y}=a^{x+y}$,
ii) $\left(a^{x}\right)^{y}=a^{x y}$,
iii) $a^{x} b^{y}=(a b)^{x}$,
iv) $(1 / a)^{x}=a^{-x}$

Proof:
i) Just a different way of writing Prop. 4.7i)
ii) $a^{x}=\exp (x \log a) \Rightarrow \log \left(a^{x}\right)=x \log a$, and therefore $\left(a^{x}\right)^{y}=\exp \left(y \log \left(a^{x}\right)\right)$
iii), iv) analogous

$$
=\exp (y \times \log a)=a^{x y}
$$

Proposition 4.9 (limits):
i) For all $k \in \mathbb{N}$ we have $\lim _{x \rightarrow \infty} \frac{e^{x}}{x^{k}}=\infty$ or in other words: "The exponential grows faster than any polynomial.
Proof:
For all $x>0$ we have:

$$
e^{x}=\sum_{n=0}^{\infty} \frac{x^{n}}{n!}>\frac{x^{k+1}}{(k+1)!}
$$

$\Rightarrow \frac{e^{x}}{x^{k}}>\frac{x}{(k+1)!}$ from which the claim follows immediately.
ii) For all $k \in \mathbb{N}$:

$$
\lim _{x \rightarrow \infty} x^{k} e^{-x}=0 \quad \text { and } \quad \lim _{x \rightarrow 0} x^{k} e^{\frac{1}{x}}=\infty
$$

Proof:
rewrite $x^{k} e^{-x}=\left(\frac{e^{x}}{x^{k}}\right)^{-1} \Rightarrow$ first statement

$$
\lim _{x \rightarrow 0} x^{k} e^{\frac{1}{x}}=\lim _{y \rightarrow \infty}\left(\frac{1}{y}\right)^{k} e^{y}=\lim _{y \rightarrow \infty} \frac{e^{y}}{y^{k}}=\infty
$$

iii) $\lim _{x \rightarrow \infty} \log x=\infty$ and $\lim _{x \rightarrow 0} \log x=-\infty$

Proof:
Let $K \in \mathbb{R}$ be arbitrary. As log is strictly monotonic increasing, we have $\log x>k$ for all $x>e^{k}$. Thus $\lim _{x \rightarrow \infty} \log x=\infty$
Also

$$
\lim _{x \rightarrow 0} \log x=\lim _{y \rightarrow \infty} \log (1 / y)=-\lim _{y \rightarrow \infty} \log y=-\infty
$$

iv) For every real number $\alpha>0$ we have

$$
\lim _{x \rightarrow 0} x^{\alpha}=0 \quad \text { and } \quad \lim _{x \rightarrow 0} x^{-\alpha}=\infty .
$$

Proof:
Let $\left(x_{n}\right)_{n \in \mathbb{N}}$ be a sequence of real numbers with $x_{n}>0$ and $\lim _{n \rightarrow \infty} x_{n}=0$. iii) gives

$$
\lim _{n \rightarrow \infty} \alpha \log x_{n}=-\infty
$$

Together with $\lim _{y \rightarrow-\infty} e^{y}=0($ see ii)) we get

$$
\lim _{n \rightarrow \infty} x_{n}^{\alpha}=\lim _{n \rightarrow \infty} e^{\alpha \log x_{n}}=0
$$

and so $\lim _{x \rightarrow 0} x^{\alpha}=0$. The second statement follows due to $x^{-\alpha}=\frac{1}{x^{\alpha}}$.
v) For all $\alpha>0$ we have $\lim _{x \rightarrow \infty} \frac{\log x}{x^{\alpha}}=0$ or in other wards: "The logarithm grows slower for $x \rightarrow \infty$ than any polynomial"

Proof:
Let $\left(x_{n}\right)$ be a sequence of positive numbers satisfying $\lim x_{n}=\infty$. For the sequence

$$
y_{n}:=\alpha \log x_{n}
$$

we have due to $i i i$): $\lim _{n \rightarrow \infty} Y_{n}=\infty$
As $x_{n}{ }^{\alpha}=e^{y_{n}}$, we obtain (using ii)):

$$
\lim _{n \rightarrow \infty} \frac{\log x_{n}}{x_{n}{ }^{\alpha}}=\lim _{n \rightarrow \infty} \frac{1}{\alpha} y_{n} e^{-y_{n}}=0
$$

vi) Far all $\alpha>0$ we have $\lim _{x \rightarrow 0} x^{\alpha} \log x=0$

Proof:
This follows from v) as $x^{\alpha} \log x=-\frac{\log \left(\frac{1}{x}\right)}{\left(\frac{1}{x}\right)^{\alpha}}$

